Introduction

NeuralMarker offers a variety of state-of-the-art Pretrained eep Learning Models for Image Segmentation from different available frameworks like TensorFlow and PyTorch.

These available Pretrained deep learning models cover broad categories of Image Segmentation tasks such as :

  • Semantic segmentation  
  • Instance segmentation
  • Panoptic segmentation


This list of models at hand is not static, as more models in the Neural Network Library of NeuralMarker will be added, then accordingly the below list will be updated too:

Pretrained Models 


1.  DeepLabv3_MobileNetV2


      Model NameDeepLabv3  

      Network Backbone: MobileNetv2

      No of Categories: 21 

      Convenient to Use: For Semantic Image Segmentation

      Dataset UsedPascal VOC (2007-2012)




2.  DeepLabv3_xception65

    

      Model NameDeepLabv3  

      Network Backbonexception65

      No of Categories: 21 

      Convenient to Use: For Semantic Image Segmentation

      Dataset UsedPascal VOC (2007-2012)





3.  Matterport_Mask R-CNN_MS COCO

    

      Framework UsedMask R-CNN 

      Network BackboneResNet101

      No of Categories: 80

      Convenient to UseFor Instance Image Segmentation

      Dataset UsedMS COCO




4.  DETR [Detection Transformer]

    

      Framework UsedFaster R-CNN

      Network BackboneResNet-50

      No of Categories: 80

      Convenient to UseFor Instance Image Segmentation, Panoptic Segmentation

      Dataset UsedMS COCO




5.  Detectron2_Cityscapes_MaskRCNN

    

      Framework UsedMask R-CNN

      Network BackboneResNet-50 + Feature Pyramid Network (FPN)

      No of Categories8

      Convenient to UseFor Instance Image Segmentation

      Dataset UsedCityscapes




6.  Detectron2_MS COCO_MaskRCNN

    

      Framework UsedMask R-CNN

      Network BackboneResNet-50 + Feature Pyramid Network (FPN)

      No of Categories80

      Convenient to UseFor Instance Image Segmentation

      Dataset UsedMS COCO




7.  LVIS_R50FPN

    

      Framework UsedMask R-CNN

      Network BackboneResNet-50 + Feature Pyramid Network (FPN)

      No of Categories1230

      Convenient to UseFor Vocabulary Instance Image Segmentation

      Dataset UsedLVIS 



8.  LVIS_R101FPN

    

      Framework UsedMask R-CNN

      Network BackboneResNet-101 + Feature Pyramid Network (FPN)

      No of Categories1230

      Convenient to UseFor Vocabulary Instance Image Segmentation

      Dataset UsedLVIS




9.  MMSEG_PSPNet_cityscape_r101


     Framework Used: PSPNet

     Network Backbone:R-101-D8

     Dataset UsedCityscapes

       lr schld: 80000 

      Convenient to Use: Image Segmentation


10.  MMSEG_PSPNet_cityscape_r50


     Framework Used: PSPNet

     Network Backbone:R-50-D8

     Dataset UsedCityscapes

       lr schld: 80000 

      Convenient to Use: Image Segmentation




11.  HRNet-Semantic-Segmentation-OCR_Cityscape


        Network BackboneHRNet-W48 + OCR

      No of Categories: 19

      Dataset UsedCityscapes 

      Convenient to Use: Semantic Segmentation



12.  HRNet-Semantic-Segmentation-OCR_pascal_ctx


      Network BackboneHRNet-W48 + OCR

      No of Categories: 59

      Dataset UsedPASCAL-Context

      Convenient to Use: Semantic Segmentation




13.  HRNet-Semantic-Segmentation-OCR_ade20k


      Network BackboneHRNet-W48 + OCR

      No of Categories: 150

      Dataset UsedADE20K

      Convenient to Use: Semantic Segmentation



14.  HRNet-Semantic-Segmentation-OCR_COCOStuff


      Network Backbone: HRNet-W48 + OCR

      No of Categories: 171

      Dataset UsedCOCO-Stuff

      Convenient to Use: Semantic Segmentation



15.  HRNet-Semantic-Segmentation-OCR_LIP


      Network BackboneHRNet-W48 + OCR

      No of Categories: 20 classes (19 semantic human part classes and 1 background class)

      Dataset UsedLIP

      Convenient to Use: Semantic Segmentation


16.  HRNet-Semantic-Segmentation_Cityscape_small_v1


        Model NameHRNetV2-W18-Small-v1

      No of Categories: 19

      Dataset UsedCityscapes 

      Convenient to Use: Semantic Segmentation



17.  HRNet-Semantic-Segmentation_Cityscape_Big


      Model NameHRNetV2-W48

      No of Categories: 19

      Dataset UsedCityscapes 

      Convenient to Use: Semantic Segmentation


18.  HRNet-Semantic-Segmentation_LIP


        Model NameHRNetV2-W48

      No of Categories: 20

      Dataset UsedLIP 

      Convenient to Use: Semantic Segmentation



19.  HRNet-Semantic-Segmentation_pascal_ctx


      Model NameHRNetV2-W48

      No of Categories: 59

      Dataset UsedPASCAL-Context

      Convenient to Use: Semantic Segmentation


20.  MMSEG_OCRNet_VOC12_HRNet48


     Method Used: OCRNet

     Network Backbone:HRNetV2p-W48

     Dataset UsedPASCAL VOC 2012

       Input Resolution : 512x512 

      Convenient to Use: Semantic Segmentation



21.  MMSEG_OCRNet_VOC12_HRNet18_small


     Method Used: OCRNet

     Network Backbone:HRNetV2p-W18-small

     Dataset UsedPASCAL VOC 2012

       Input Resolution : 512x512 

      Convenient to Use: Semantic Segmentation



22.  MMSEG_OCRNet_VOC12_HRNet18


     Method Used: OCRNet

     Network Backbone:HRNetV2p-W18

     Dataset UsedPASCAL VOC 2012

       Input Resolution : 512x512 

      Convenient to Use: Semantic Segmentation



23.  MMSEG_OCRNet_ade20k_HRNet18_small


     Method Used: OCRNet

     Network Backbone:HRNetV2p-W18

     Dataset UsedADE20k

       Input Resolution : 512x512 

      Convenient to Use: Semantic Segmentation



24.  MMSEG_OCRNet_ade20k_HRNet18


     Method Used: OCRNet

     Network Backbone:HRNetV2p-W18

     Dataset UsedADE20k

       Input Resolution : 512x512 

      Convenient to Use: Semantic Segmentation


25.  MMSEG_OCRNet_ade20k_HRNet48


     Method Used: OCRNet

     Network Backbone:HRNetV2p-W48

     Dataset UsedADE20k

       Input Resolution : 512x512 

      Convenient to Use: Semantic Segmentation


26.  MMSEG_deeplabv3_pascal_ctx_r101


      Method Used: DeepLabV3

      Network BackboneR-101-D8

      No of Categories: 60

      Dataset UsedPASCAL-Context

      Convenient to Use: Semantic Segmentation



27.  MMSEG_deeplabv3_VOC12_r101


      Method Used: DeepLabV3

      Network BackboneR-101-D8

      No of Categories: 21

      Dataset UsedPASCAL VOC 2012

      Convenient to Use: Semantic Segmentation


28.  MMSEG_deeplabv3_VOC12_r50


      Method Used: DeepLabV3

      Network BackboneR-50-D8

      No of Categories: 21

      Dataset UsedPASCAL VOC 2012

      Convenient to Use: Semantic Segmentation


29.  MMSEG_deeplabv3_ade20k_r101


      Method Used: DeepLabV3

      Network BackboneR-101-D8

      No of Categories: 150

      Dataset UsedADE20k

      Convenient to Use: Semantic Segmentation



30.  MMSEG_deeplabv3_ade20k_r50


      Method Used: DeepLabV3

      Network BackboneR-50-D8

      No of Categories: 150

      Dataset UsedADE20k

      Convenient to Use: Semantic Segmentation



31.  MMSEG_deeplabv3plus_pascal_ctx_r101


      Method Used: DeepLabV3+

      Network BackboneR-101-D8

      No of Categories: 60

      Dataset UsedPASCAL-Context

      Convenient to Use: Semantic Segmentation


32.  MMSEG_deeplabv3plus_VOC12_r101


      Method Used: DeepLabV3+

      Network BackboneR-101-D8

      No of Categories: 21

      Dataset UsedPASCAL VOC 2012

      Convenient to Use: Semantic Segmentation


33.  MMSEG_deeplabv3plus_VOC12_r50


      Method Used: DeepLabV3+

      Network BackboneR-50-D8

      No of Categories: 21

      Dataset UsedPASCAL VOC 2012

      Convenient to Use: Semantic Segmentation


34.  MMSEG_deeplabv3plus_ade20k_r101


      Method Used: DeepLabV3+

      Network BackboneR-101-D8

      No of Categories: 150

      Dataset UsedADE20k

      Convenient to Use: Semantic Segmentation



35.  MMSEG_deeplabv3plus_ade20k_r50


      Method Used: DeepLabV3+

      Network BackboneR-50-D8

      No of Categories: 150

      Dataset UsedADE20k

      Convenient to Use: Semantic Segmentation



36.  MMSEG_PSPNet_pascal_ctx_r101


      Method Used: PSPNet

      Network BackboneR-101-D8

      No of Categories: 60

      Dataset UsedPASCAL-Context

      Convenient to Use: Semantic Segmentation



37.  MMSEG_PSPNet_VOC12_r50


      Method Used: PSPNet

      Network BackboneR-50-D8

      No of Categories: 21

      Dataset UsedPASCAL VOC 2012

      Convenient to Use: Semantic Segmentation



38.  MMSEG_PSPNet_VOC12_r101


      Method Used: PSPNet

      Network BackboneR-101-D8

      No of Categories: 21

      Dataset UsedPASCAL VOC 2012

      Convenient to Use: Semantic Segmentation


39.  MMSEG_PSPNet_ade20k_r50


      Method Used: PSPNet

      Network BackboneR-50-D8

      No of Categories: 150

      Dataset UsedADE20k

      Convenient to Use: Semantic Segmentation


40.  MMSEG_PSPNet_ade20k_r101


      Method Used: PSPNet

      Network BackboneR-101-D8

      No of Categories: 150

      Dataset UsedADE20k

      Convenient to Use: Semantic Segmentation



41.  MMSEG_ANN_ade20k_r101


      Method Used: ANN

      Network BackboneR-101-D8

      No of Categories: 150

      Dataset UsedADE20k

      Convenient to Use: Semantic Segmentation


42.  MMSEG_ANN_ade20k_r50


      Method Used: ANN

      Network BackboneR-50-D8

      No of Categories: 150

      Dataset UsedADE20k

      Convenient to Use: Semantic Segmentation



43.  MMSEG_ANN_VOC12_r50


      Method Used: ANN

      Network BackboneR-50-D8

      No of Categories: 21

      Dataset UsedPASCAL VOC 2012

      Convenient to Use: Semantic Segmentation


44.  MMSEG_ANN_VOC12_r101


      Method Used: ANN

      Network BackboneR-101-D8

      No of Categories: 21

      Dataset UsedPASCAL VOC 2012

      Convenient to Use: Semantic Segmentation


How to create Annotations on an Image Segmentation Dataset using S-O-T-A Pre-Trained Models


Steps to Follow


1. log in to the tool

2. Click on the Add button.

3. The Add Dataset Form will appear.

4. Fill in all the fields such as dataset name, dataset description, category-type, and categories.


     4 a. Select category-type as Segmentation

     4 b. Choose Pretraining Models from the available list.

     4 c. Categories according to the chosen model will appear.



5. Add data to NeuralMarker using the available options listed below:


To Learn More, Click Here.


6. Click on Submit Button

7. A New Dataset will be created.

8. After New Dataset is created: 

  • The Dataset card will display the status "Pretrain Model running". 
  • The brain symbol on hover will display "AI labeling in Progress".




9. After Pretrain Model stops running over the entire dataset:

  •  The Dataset card will display the status "Pretrain Model Done & Ready For Annotation". 
  •  The brain symbol on the card will display "AI Labeling Report".



10. After Pretrain Model stops running over the entire dataset, an AI labeling report will be generated:

  • With a confidence score of annotations over the images in the dataset.