Introduction

NeuralMarker offers a variety of state-of-the-art Pretrained Deep Learning Models for Image Classification from different available frameworks like TensorFlow, Keras, and Caffe.

The Pretrained Models available at your fingertip in NeuralMarker Neural Network Library can be effectively used to fine-tune or make better predictions on Image classification Datasets.


This list is not static, as the more state-of-the-art model will be added in NeuralMarker then accordingly the below list will be updated too: 


Pretrained Models 


1.  EfficientNet-B0

 

      Network Backbone: ResNet-50 

                                         DenseNet-169

      No of Categories:1000

      Dataset UsedImageNet



2.  EfficientNet-B1

 

      Network Backbone: ResNet-152 

                                         DenseNet-264

                                         Inception-v3

                                         Xception 

       No of Categories:1000

       Dataset UsedImageNet



3.  EfficientNet-B2

 

      Network Backbone: Inception-v4

                                        Inception-resnet-v2                                   

      No of Categories:1000

      Dataset UsedImageNet



4.  EfficientNet-B3

 

      Network Backbone:ResNeXt-101

                                        PolyNet                              

      No of Categories:1000

      Dataset UsedImageNet



5.  EfficientNet-B4

 

      Network Backbone: SENet 

                                        NASNet-A 

                                        AmoebaNet-A 

                                        PNASNet 

      No of Categories:1000

      Dataset UsedImageNet



6.  EfficientNet-B5

 

      Network Backbone: AmoebaNet-C                                  

      No of Categories:1000

      Dataset UsedImageNet




7.  EfficientNet-B6

                               

      No of Categories:1000

      Dataset UsedImageNet




8.  EfficientNet-B7

 

      Network Backbone: GPipe                                  

      No of Categories:1000

      Dataset UsedImageNet




9.  OpenCV_MobileNet_Classification  

                            

      No of Categories:1000

      Dataset UsedILSVRC2012


 

10. MobileNetv2_ImageNet               

             

      No of Categories:1000

      Dataset UsedImageNet



11.  Resnet50_ImageNet               

             

      No of Categories:1000

      Dataset UsedImageNet




12. Vision-transformer-imagenet-L32


      No of Categories:1000

      Dataset UsedImageNet



13. Vision-transformer-imagenet-L16


      No of Categories:1000

      Dataset UsedImageNet



14. Vision-transformer-imagenet-B32


      No of Categories:1000

      Dataset UsedImageNet


15. Vision-transformer-imagenet-B16    

 

      No of Categories:1000

      Dataset UsedImageNet







How to create labels on an Image Classification Dataset using S-O-T-A Pre-Trained Models


Steps to Follow


1. Login to the tool

2. Click on the Add button.

3. The Add Dataset Form will appear.

4. Fill in all the fields such as dataset name, dataset description, category-type, and categories.


4 a. Select category-type as Classification

     4 b. Choose Pretraining Models from the available list.



     4 c. Tags according to the chosen model will appear. The terminology used for these Model tags is as follows:

"Model-name_dataset-name(on which they are trained)-predictions"




All Classification Models are trained on ImageNet Dataset



5. Add data to NeuralMarker using the available options listed below:


To Learn More, Click Here.




6. Click on Submit Button

7. A New Dataset will be created.

8. After New Dataset is created: 

  • The Dataset card will display the status "Pretrain Model running". 
  • The brain symbol on hover will display "AI labeling in Progress".


9. After Pretrain Model stops running over the entire dataset:

  •  The Dataset card will display the status "Pretrain Model Done & Ready For Annotation". 
  •  The brain symbol on the card will display "AI Labeling Report".



10. After Pretrain Model stops running over the entire dataset, an AI labeling report will be generated:

  • With a confidence score of "class labels" over the images in the dataset.