Introduction

NeuralMarker offers a variety of Pretrained Deep Learning Models for Rectangle Category shape from different available frameworks like TensorFlowYolo, and PyTorch.



These available Pretrained Deep Learning Models profoundly use for Object Detection tasks to detect objects such as Person, Bicycle, Face,s and many more.



This list of models at hand is not static, as more State-Of-The-Art models in the Neural Network Library of NeuralMarker will be added, then accordingly the below list will be updated too:


Pretrained Models 


1.  Centernet_COCO


      Model NameCenternet

      Network Backbone: Hourglass-104

                                         DLA-34

                                         ResNet-101

                                         ResNet-18

      No of Categories: 80

      Dataset UsedMS COCO



2.  YOLOv3_COCO


       Model NameYOLOv3

       Network Backbone: Darknet-53

       No of Categories: 80

       Dataset UsedMS COCO




3.  Efficientdet-d0_COCO


       Model NameEfficientdet-d0

       Network Backbone: ImageNet-pretrained EfficientNets

       No of Categories: 80

       Dataset UsedMS COCO




4.  Efficientdet-d3_COCO


       Model NameEfficientdet-d3

       Network Backbone: ImageNet-pretrained EfficientNets

       No of Categories: 80

       Dataset UsedMS COCO



5.  MTCNN_widerface


       Model NameMulti-task CNN

       No of Categories: 1 (Face)

       Dataset UsedWIDER FACE dataset





6.  YOLOv5s_COCO


       Model NameYOLOv5s

       No of Categories: 80

       Dataset UsedMS COCO



7.  YOLOv5x_COCO


       Model NameYOLOv5x

       No of Categories: 80

       Dataset UsedMS COCO



8.  Detr-Detection

 

      Model NameDEtection TRansformer

      Network Backbone: R50

      No of Categories: 80

      Dataset UsedMS COCO




9.  Faster R-CNN-mmdet-R50-FPN-1x


          Model Library: mmdet

      Model ArchitectureFaster R-CNN

      Network Backbone: R-50-FPN

      lr schd: 1x

      No of Categories: 80

      Dataset UsedMS COCO



10.  Faster R-CNN-mmdet-R50-FPN-2x

          

          Model Library: mmdet

      Model ArchitectureFaster R-CNN

      Network Backbone: R-50-FPN

      lr schd: 2x

      No of Categories: 80

      Dataset UsedMS COCO



11.  mmdet-RetinaNet-R50-FPN-1x


          Model Library : mmdet 

      Model Architecture RetinaNet

      Network Backbone: R-50-FPN

      lr schd: 1x

      No of Categories: 80

      Dataset UsedMS COCO



12.  mmdet-RetinaNet-R50-FPN-2x


      Model Library : mmdet

      Model Architecture RetinaNet

      Network Backbone: R-50-FPN

      lr schd: 2x

      No of Categories: 80

      Dataset UsedMS COCO



13.  Faster R-CNN-Detectron2-R50-FPN


          Model Library: Detectron2

      Model ArchitectureFaster R-CNN

      Network Backbone: R-50-FPN

      No of Categories: 80

      Dataset UsedMS COCO



14.  Faster R-CNN-Detectron2-R101-FPN


          Model Library: Detectron2

      Model ArchitectureFaster R-CNN

      Network Backbone: R-101-FPN

      No of Categories: 80

      Dataset UsedMS COCO



15.  Faster R-CNN-Detectron2-X101-FPN


          Model Library: Detectron2

      Model ArchitectureFaster R-CNN

      Network Backbone: X-101-FPN

      No of Categories: 80

      Dataset UsedMS COCO



16.  RetinaNet-R50


          Model Library : Detectron2

      Model Architecture RetinaNet

      Network Backbone: R-50

      lr schd: 1x

      No of Categories: 80

      Dataset UsedMS COCO



17.  RetinaNet-R50_3x


          Model Library : Detectron2

      Model Architecture RetinaNet

      Network Backbone: R-50

      lr schd: 3x

      No of Categories: 80

      Dataset UsedMS COCO



18.  RetinaNet-R101


          Model Library : Detectron2

      Model Architecture RetinaNet

      Network Backbone: R-101

      lr schd: 3x

      No of Categories: 80

      Dataset UsedMS COCO



19.  TFlite-object-detection-v2-ssd_resnet101_v1_fpn_640x640_coco


     Model Architecture : SSD FPN object detection

     Network BackboneR-101-FPN 

     No of Categories: 80

       Dataset UsedMS COCO



20. TFlite-object-detection-v2-ssd_resnet101_v1_fpn_1024x1024_coco


      Model Architecture: SSD FPN object detection

      Network Backbone: R-101-FPN

      No of Categories: 80

          Dataset UsedMS COCO



21. TFlite-object-detection-v2-ssd_resnet152_v1_fpn_640x640_coco

 

      Model ArchitectureSSD FPN object detection

      Network Backbone: R-152-FPN

      No of Categories: 80

          Dataset UsedMS COCO



22. TFlite-object-detection-v2-ssd_resnet152_v1_fpn_1024x1024_coco

      Model Architecture: SSD FPN object detection

      Network Backbone: R-152-FPN

      No of Categories: 80

          Dataset UsedMS COCO



23. TFlite-object-detection-v2-ssd_resnet50_v1_fpn_640x640_coco


      Model ArchitectureSSD FPN object detection

      Network Backbone: R-50-FPN

      No of Categories: 80

          Dataset UsedMS COCO




24. TFlite-object-detection-v2-ssd_resnet50_v1_fpn_1024x1024_coco


 

      Model ArchitectureSSD FPN object detection

      Network Backbone: R-50-FPN

      No of Categories: 80

          Dataset UsedMS COCO



25.  YOLOv4_CSP(Cross Stage Partial Network)


       Model NameYOLOv4

       No of Categories: 80

       Dataset UsedMS COCO



26.  YOLOv4-large


       Model NameYOLOv4

       No of Categories: 80

       Dataset UsedMS COCO



27.  YOLOv4-tiny


       Model NameYOLOv4

       No of Categories: 80

       Dataset UsedMS COCO



28.  YOLOv4-large-608


       Model NameYOLOv4

       Input Size: 608

       No of Categories: 80

       Dataset UsedMS COCO



29.  YOLOv4-large-leaky


       Model NameYOLOv4

       Activation Functionleaky RELU

       No of Categories: 80

       Dataset UsedMS COCO



30.  YOLOv4-large-mish


       Model NameYOLOv4

       Activation Function Mish

       No of Categories: 80

       Dataset UsedMS COCO


31.  YOLOv4-large-608-leaky


       Model NameYOLOv4

       Input Size: 608

       Activation Function : leaky RELU

       No of Categories: 80

       Dataset UsedMS COCO


32.  YOLOv4-large-608-mish


       Model NameYOLOv4

       Input Size: 608

       Activation Function Mish

       No of Categories: 80

       Dataset UsedMS COCO


33.  MTCNN-TensorFlow


       Model NameMulti-task CNN

       No of Categories: 1 (Face)

       Dataset UsedWIDER FACE dataset, Celeba, LFW 



34.  Mediapipe-Face-Detection


       Model NameBlazeFace

       No of Categories: 1 (Face)

       Dataset Used: Created private geographically diverse dataset



35.  mmdet-RetinaNet-R50-NASFPN-50e


          Model Library: mmdet 

      Model Architecture RetinaNet

      Network Backbone: R-50-NASFPN

      lr schd: 50e

      No of Categories: 80

      Dataset UsedMS COCO


36.  mmdet-RetinaNet-R50-FPN-50e



          Model Library: mmdet 

      Model Architecture RetinaNet

      Network Backbone: R-50-FPN

      lr schd: 50e

      No of Categories: 80

      Dataset UsedMS COCO



37.  mmdet-RetinaNet-R101-FPN-2x


          Model Library: mmdet 

      Model Architecture RetinaNet

      Network Backbone: R-101-FPN

      lr schd: 2x

      No of Categories: 80

      Dataset UsedMS COCO


38.  mmdet-RetinaNet-R101-FPN-1x


          Model Library: mmdet 

      Model Architecture RetinaNet

      Network Backbone: R-101-FPN

      lr schd: 1x

      No of Categories: 80

      Dataset UsedMS COCO



39.  YOLOv3_mmdetection-PyTorch


       Model Library: mmdet 

       Model NameYOLOv3

       Network Backbone: Darknet-53

       No of Categories: 80

       Dataset UsedMS COCO



40.  SSD-VGG16-512-mmdet-PyTorch


        Model Library: mmdet

           Input Size: 512

           Network Backbone: VGG16

       No of Categories: 80

       Dataset UsedMS COCO



41.  SSD-VGG16-300-mmdet-PyTorch


         Model Library: mmdet

            Input Size: 300

            Network Backbone: VGG16

        No of Categories: 80

        Dataset UsedMS COCO



42.  Mask-RCNN-mmdet-R50-FPN-2x


          Model Library: mmdet

      Network Backbone: R-50-FPN

      lr schd: 2x

      No of Categories: 80

      Dataset UsedMS COCO


43.  Mask-RCNN-mmdet-R50-FPN-1x


          Model Library: mmdet

      Network Backbone: R-50-FPN

      lr schd: 1x

      No of Categories: 80

      Dataset UsedMS COCO


44.  Mask-RCNN-mmdet-R101-FPN-2x


          Model Library: mmdet

      Network Backbone: R-101-FPN

      lr schd: 2x

      No of Categories: 80

      Dataset UsedMS COCO



45.  Mask-RCNN-mmdet-R101-FPN-1x


          Model Library: mmdet

      Network Backbone: R-101-FPN

      lr schd: 2x

      No of Categories: 80

      Dataset UsedMS COCO



46.  Faster-RCNN-mmdet-R101-FPN-2x


          Model Library: mmdet

      Network Backbone: R-101-FPN

      lr schd: 2x

      No of Categories: 80

      Dataset UsedMS COCO


47.  Faster-RCNN-mmdet-R101-FPN-1x


          Model Library: mmdet

      Network Backbone: R-101-FPN

      lr schd: 1x

      No of Categories: 80

      Dataset UsedMS COCO


48.  Dynamic-RCNN-mmdet-R50


          Model Library: mmdet

      Network Backbone: R-50

      lr schd: 1x

      No of Categories: 80

      Dataset UsedMS COCO


49.  DETR-mmdetection-PyTorch-R50


          Model Library: mmdet

      Network Backbone: R-50

      lr schd: 150e

      No of Categories: 80

      Dataset UsedMS COCO



50.  Cascade-Mask-RCNN-mmdet-R50-FPN-20e


          Model Library: mmdet 

      Network Backbone: R-50-FPN

      lr schd: 20e

      No of Categories: 80

      Dataset UsedMS COCO



51.  Cascade-Mask-RCNN-mmdet-R50-FPN-1x


          Model Library: mmdet 

      Network Backbone: R-50-FPN

      lr schd: 1x

      No of Categories: 80

      Dataset UsedMS COCO



52.  Cascade-Mask-RCNN-mmdet-R101-FPN-20e


          Model Library: mmdet 

      Network Backbone: R-101-FPN

      lr schd: 20e

      No of Categories: 80

      Dataset UsedMS COCO



53.  Cascade-Mask-RCNN-mmdet-R101-FPN-1x


          Model Library: mmdet 

      Network Backbone: R-101-FPN

      lr schd: 1x

      No of Categories: 80

      Dataset UsedMS COCO


54.  YOLOv5x_TTA_COCO


       Model NameYOLOv5

       No of Categories: 80

       Dataset UsedMS COCO


55.  YOLOv5l_COCO


       Model NameYOLOv5

       No of Categories: 80

       Dataset UsedMS COCO


56.  YOLOv5m_COCO


       Model NameYOLOv5m

       No of Categories: 80

       Dataset UsedMS COCO





How to create Annotations on an Object Detection Dataset using S-O-T-A Pre-Trained Models


Steps to Follow


1. log in to the tool

2. Click on the Add button.

3. The Add Dataset Form will appear.

4. Fill in all the fields such as dataset name, dataset description, category-type, and categories.


     4 a. Select category-type as Rectangle

     4 b. Choose Pretraining Models from the available list.

     4 c. Categories according to the chosen model will appear.



5. Add data to NeuralMarker using the available options listed below:


To Learn More, Click Here.


6. Click on Submit Button

7. A New Dataset will be created.

8. After New Dataset is created: 

  • The Dataset card will display the status "Pretrain Model running". 
  • The brain symbol on hover will display "AI labeling in Progress".




9. After Pretrain Model stops running over the entire dataset:

  •  The Dataset card will display the status "Pretrain Model Done & Ready For Annotation". 
  •  The brain symbol on the card will display "AI Labeling Report".


10. After Pretrain Model stops running over the entire dataset, an AI labeling report will be generated:

  • With a confidence score of annotation over the images in the dataset.